Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Polymers (Basel) ; 16(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38674975

RESUMO

Monitoring of molding processes is one of the most challenging future tasks in polymer processing. In this work, the in situ monitoring of the curing behavior of highly filled EMCs (silica filler content ranging from 73 to 83 wt%) and the effect of filler load on curing kinetics are investigated. Kinetic modelling using the Friedman approach was applied using real-time process data obtained from in situ DEA measurements, and these online kinetic models were compared with curing analysis data obtained from offline DSC measurements. For an autocatalytic fast-reacting material to be processed above the glass transition temperature Tg and for an autocatalytic slow-reacting material to be processed below Tg, time-temperature-transformation (TTT) diagrams were generated to investigate the reaction behavior regarding Tg progression. Incorporating a material containing a lower silica filler content of 10 wt% enabled analysis of the effects of filler content on sensor sensitivity and curing kinetics. Lower silica particle content (and a larger fraction of organic resin, respectively) favored reaction kinetics, resulting in a faster reaction towards Tg1. Kinetic analysis using DEA and DSC facilitated the development of highly accurate prediction models using the Friedman model-free approach. Lower silica particle content resulted in enhanced sensitivity of the analytical method, leading, in turn, to more precise prediction models for the degree of cure.

2.
Polymers (Basel) ; 16(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38675021

RESUMO

An epoxy compound's polymer structure can be characterized by the glass transition temperature (Tg) which is often seen as the primary morphological characteristic. Determining the Tg after manufacturing thermoset-molded parts is an important objective in material characterization. To characterize quantitatively the dependence of Tg on the degree of cure, the DiBenedetto equation is usually used. Monitoring polymer network formation during molding processes is therefore one of the most challenging tasks in polymer processing and can be achieved using dielectric analysis (DEA). In this study, the morphological properties of an epoxy resin-based molding compounds (EMC) were optimized for the molding process using response surface analysis. Processing parameters such as curing temperature, curing time, and injection rate were investigated according to a DoE strategy and analyzed as the main factors affecting Tg as well as the degree of cure. A new method to measure the Tg at a certain degree of cure was developed based on warpage analysis. The degree of cure was determined inline via dielectric analysis (DEA) and offline using differential scanning calorimetry (DSC). The results were used as the response in the DoE models. The use of the DiBenedetto equation to refine the response characteristics for a wide range of process parameters has significantly improved the quality of response surface models based on the DoE approach.

3.
Viruses ; 16(2)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38399953

RESUMO

Coronaviruses are a large family of enveloped RNA viruses found in numerous animal species. They are well known for their ability to cross species barriers and have been transmitted from bats or intermediate hosts to humans on several occasions. Four of the seven human coronaviruses (hCoVs) are responsible for approximately 20% of common colds (hCoV-229E, -NL63, -OC43, -HKU1). Two others (SARS-CoV-1 and MERS-CoV) cause severe and frequently lethal respiratory syndromes but have only spread to very limited extents in the human population. In contrast the most recent human hCoV, SARS-CoV-2, while exhibiting intermediate pathogenicity, has a profound impact on public health due to its enormous spread. In this review, we discuss which initial features of the SARS-CoV-2 Spike protein and subsequent adaptations to the new human host may have helped this pathogen to cause the COVID-19 pandemic. Our focus is on host forces driving changes in the Spike protein and their consequences for virus infectivity, pathogenicity, immune evasion and resistance to preventive or therapeutic agents. In addition, we briefly address the significance and perspectives of broad-spectrum therapeutics and vaccines.


Assuntos
COVID-19 , Coronavirus Humano 229E , Animais , Humanos , Glicoproteína da Espícula de Coronavírus/genética , Pandemias , SARS-CoV-2
4.
Langmuir ; 40(8): 4294-4305, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38346113

RESUMO

The adsorption of cationic peptide JM21 onto different mesoporous silica nanoparticles (MSNs) from an aqueous solution was studied as a function of pH. In agreement with the literature, the highest loading degrees could be achieved at pH close to the isoelectric point of the peptide where the peptide-peptide repulsion is minimum. However, mesopore size, mesopore geometry, and surface polarity all had an influence on the peptide adsorption in terms of both affinity and maximum loading at a given pH. This adsorption behavior could largely be explained by a combination of pH-dependent electrostatic interactions and confinement effects. It is demonstrated that hydrophobic interactions enhance the degree of peptide adsorption under pH conditions where the electrostatic attraction was absent in the case of mesoporous organosilica nanoparticles (MONs). The lower surface concentration of silanol groups for MON led to a lower level of peptide adsorption under optimum pH conditions compared to all-silica particles. Finally, the study confirmed the protective role of MSNs in preserving the biological activity of JM#21 against enzymatic degradation, even for large-pore MSNs, emphasizing their potential as nanocarriers for therapeutic peptides. By integrating experimental findings with theoretical modeling, this research elucidates the complex interplay of factors that influence peptide-silica interactions, providing vital insights for optimizing peptide loading and stabilization in biomedical applications.


Assuntos
Nanopartículas , Dióxido de Silício , Dióxido de Silício/química , Peptídeos/química , Nanopartículas/química , Porosidade , Portadores de Fármacos/química
5.
ChemSusChem ; 17(4): e202301269, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-37848390

RESUMO

Rechargeable magnesium batteries could provide future energy storage systems with high energy density. One remaining challenge is the development of electrolytes compatible with the negative Mg electrode, enabling uniform plating and stripping with high Coulombic efficiencies. Often improvements are hindered by a lack of fundamental understanding of processes occurring during cycling, as well as the existence and structure of a formed interphase layer at the electrode/electrolyte interface. Here, a magnesium model electrolyte based on magnesium bis(trifluoromethanesulfonyl)imide (Mg(TFSI)2 ) and MgCl2 with a borohydride as additive, dissolved in dimethoxyethane (DME), was used to investigate the initial galvanostatic plating and stripping cycles operando using electrochemical quartz crystal microbalance with dissipation monitoring (EQCM-D). We show that side reactions lead to the formation of an interphase of irreversibly deposited Mg during the initial cycles. EQCM-D based hydrodynamic spectroscopy reveals the growth of a porous layer during Mg stripping. After the first cycles, the interphase layer is in a dynamic equilibrium between the formation of the layer and its dissolution, resulting in a stable thickness upon further cycling. This study provides operando information of the interphase formation, its changes during cycling and the dynamic behavior, helping to rationally develop future electrolytes and electrode/electrolyte interfaces and interphases.

6.
ChemSusChem ; 17(1): e202301057, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37505454

RESUMO

Sustainable battery concepts are of great importance for the energy storage demands of the future. Organic batteries based on redox-active polymers are one class of promising storage systems to meet these demands, in particular when combined with environmentally friendly and safe electrolytes. Deep Eutectic Solvents (DESs) represent a class of electrolytes that can be produced from sustainable sources and exhibit in most cases no or only a small environmental impact. Because of their non-flammability, DESs are safe, while providing an electrochemical stability window almost comparable to established battery electrolytes and much broader than typical aqueous electrolytes. Here, we report the first all-organic battery cell based on a DES electrolyte, which in this case is composed of sodium bis(trifluoromethanesulfonyl)imide (NaTFSI) and N-methylacetamide (NMA) alongside the electrode active materials poly(2,2,6,6-tetramethylpiperidin-1-yl-oxyl methacrylate) (PTMA) and crosslinked poly(vinylbenzylviologen) (X-PVBV2+ ). The resulting cell shows two voltage plateaus at 1.07 V and 1.58 V and achieves Coulombic efficiencies of 98 %. Surprisingly, the X-PVBV/X-PVBV+ redox couple turned out to be much more stable in NaTFSI : NMA 1 : 6 than the X-PVBV+ /X-PVBV2+ couple, leading to asymmetric capacity fading during cycling tests.

7.
ChemSusChem ; 17(5): e202301362, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-37889091

RESUMO

Developing suitable electrolytes is crucial for the advancement of rechargeable magnesium batteries. Recently, metal-organic frameworks (MOFs) have shown a great interest in the field of solid electrolytes for metal ion batteries. However, the ionic conductivity as well as the electrolyte stability in the presence of Mg electrodes are shown to be strongly dependent on the guest solvent used to solvate Mg salts in MOFsSEs. Our measurements showed that full evacuation of the MOF structure before semi-solid electrolytes (sSEs) preparation is crucial for achieving relatively low Mg overpotentials regardless of the ionic conductivity values. Moreover, the behavior of the anode/MOFsSEs interfaces (MOF: α-Mg3 [HCOO]6 ; Mg salt : MgCl2 -Mg[TFSI]2 (1 : 1 wt %); guest solvent: acetone, DMF, DEG, DME and tetraglyme) was investigated by EIS, CV and galvanostatic measurements. The current comparative study of the electrochemical deposition processes of magnesium from MOFsSEs revealed that magnesium deposition/dissolution reactions vary depending on the MOF structure, the guest anion species as well as the nature of the guest solvents.

8.
Nanoscale ; 15(47): 19268-19281, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37990869

RESUMO

Ultrafine metal nanoparticles (NPs) hold promise for applications in many fields, including catalysis. However, ultrasmall NPs are typically prone to aggregation, which often leads to performance losses, such as severe deactivation in catalysis. Conventional stabilization strategies (e.g., immobilization, embedding, or surface modification by capping agents) are typically only partly effective and often lead to loss of catalytic activity. Herein, a novel type of stabilizers based on water-soluble ionic (K+ and Na+ containing) polymeric carbon nitride (i.e., K,Na-poly(heptazine imide) = K,Na-PHI) is reported that enables effective stabilization of highly catalytically active ultrafine (size of ∼2-3 nm) gold NPs. Experimental and theoretical comparative studies using different structural units of K,Na-PHI (i.e., cyanurate, melonate, cyamelurate) indicate that the presence of functionalized heptazine moieties is crucial for the synthesis and stabilization of small Au NPs. The K,Na-PHI-stabilized Au NPs exhibit remarkable dispersibility and outstanding stability even in solutions of high ionic strength, which is ascribed to more effective charge delocalization in the large heptazine units, resulting in more effective electrostatic stabilization of Au NPs. The outstanding catalytic performance of Au NPs stabilized by K,Na-PHI is demonstrated using the selective reduction of 4-nitrophenol to 4-aminophenol by NaBH4 as a model reaction, in which they outperform even the benchmark "naked" Au NPs electrostatically stabilized by excess NaBH4. This work thus establishes ionic carbon nitrides (PHI) as alternative capping agents enabling effective stabilization without compromising surface catalysis, and opens up a route for further developments in utilizing PHI-based stabilizers for the synthesis of high-performance nanocatalysts.

9.
Int J Mol Sci ; 24(22)2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-38003419

RESUMO

EPI-X4, an endogenous peptide inhibitor, has exhibited potential as a blocker of CXCR4-a G protein-coupled receptor. This unique inhibitor demonstrates the ability to impede HIV-1 infection and halt CXCR4-dependent processes such as tumor cell migration and invagination. Despite its promising effects, a comprehensive understanding of the interaction between EPI-X4 and CXCR4 under natural conditions remains elusive due to experimental limitations. To bridge this knowledge gap, a simulation approach was undertaken. Approximately 150,000 secondary structures of EPI-X4 were subjected to simulations to identify thermodynamically stable candidates. This simulation process harnessed a self-developed reactive force field operating within the ReaxFF framework. The application of the Two-Phase Thermodynamic methodology to ReaxFF facilitated the derivation of crucial thermodynamic attributes of the EPI-X4 conformers. To deepen insights, an ab initio density functional theory calculation method was employed to assess the electrostatic potentials of the most relevant (i.e., stable) EPI-X4 structures. This analytical endeavor aimed to enhance comprehension of the inhibitor's structural characteristics. As a result of these investigations, predictions were made regarding how EPI-X4 interacts with CXCR4. Two pivotal requirements emerged. Firstly, the spatial conformation of EPI-X4 must align effectively with the CXCR4 receptor protein. Secondly, the functional groups present on the surface of the inhibitor's structure must complement the corresponding features of CXCR4 to induce attraction between the two entities. These predictive outcomes were based on a meticulous analysis of the conformers, conducted in a gaseous environment. Ultimately, this rigorous exploration yielded a suitable EPI-X4 structure that fulfills the spatial and functional prerequisites for interacting with CXCR4, thus potentially shedding light on new avenues for therapeutic development.


Assuntos
Infecções por HIV , Peptídeos , Humanos , Peptídeos/farmacologia , Peptídeos/química , Receptores CXCR4/metabolismo , Conformação Molecular
10.
Commun Biol ; 6(1): 1051, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848611

RESUMO

Utilization of human ACE2 allowed several bat coronaviruses (CoVs), including the causative agent of COVID-19, to infect humans directly or via intermediate hosts. However, the determinants of species-specific differences in ACE2 usage and the frequency of the ability of animal CoVs to use human ACE2 are poorly understood. Here we applied VSV pseudoviruses to analyze the ability of Spike proteins from 26 human or animal CoVs to use ACE2 receptors across nine reservoir, potential intermediate and human hosts. We show that SARS-CoV-2 Omicron variants evolved towards more efficient ACE2 usage but mutation of R493Q in BA.4/5 and XBB Spike proteins disrupts utilization of ACE2 from Greater horseshoe bats. Variations in ACE2 residues 31, 41 and 354 govern species-specific differences in usage by coronaviral Spike proteins. Mutation of T403R allows the RaTG13 bat CoV Spike to efficiently use all ACE2 orthologs for viral entry. Sera from COVID-19 vaccinated individuals neutralize the Spike proteins of various bat Sarbecoviruses. Our results define determinants of ACE2 receptor usage of diverse CoVs and suggest that COVID-19 vaccination may protect against future zoonoses of bat coronaviruses.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Quirópteros , Reservatórios de Doenças , Animais , Humanos , Enzima de Conversão de Angiotensina 2/genética , Quirópteros/genética , Vacinas contra COVID-19 , Reservatórios de Doenças/virologia , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo
11.
ChemSusChem ; 16(23): e202300934, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37544913

RESUMO

This study presents a green, ultra-fast, and facile technique for the fabrication of micro/nano-structured and porous Cu electrodes through in-liquid plasma electrolysis using phosphorous-oxoanion-based electrolytes. Besides the preferential surface faceting, the Cu electrodes exhibit unique surface structures, including octahedral nanocrystals besides nanoporous and microporous structures, depending on the employed electrolyte. The incorporation of P-atoms into the Cu surfaces is observed. The modified Cu electrodes display increased roughness, leading to higher current densities for CO2 electroreduction reaction. The selectivity of the modified Cu electrodes towards C2 products is highest for the Cu electrodes treated in Na2 HPO3 and Na3 PO4 electrolytes, whereas those treated in Na2 H2 PO2 produce the most H2 . The Cu electrode treated in Na3 PO4 produces ethylene (23 %) at -1.1 V vs. RHE, and a comparable amount of acetaldehyde (15 %) that is typically observed for Cu(110) single crystals. The enhanced selectivity is attributed to several factors, including the surface morphology, the incorporation of phosphorus into the Cu structure, and the formation of Cu(110) facets. Our results not only advance our understanding of the influence of the electrolyte's nature on the plasma electrolysis of Cu electrodes, but also underscores the potential of in-liquid plasma treatment for developing efficient Cu electrocatalysts for sustainable CO2 conversion.

12.
ACS Nano ; 17(14): 14043-14052, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37395671

RESUMO

The production of renewable feedstocks through the coupled oxygen evolution reaction (OER) with selective organic oxidation requires a perfect balance in the choice of a catalyst and its synthesis access, morphology, and catalytic activity. Herein we report a rapid in-liquid plasma approach to produce a hierarchical amorphous birnessite-type manganese oxide layer on 3D nickel foam. The as-prepared anode exhibits an OER activity with overpotentials of 220, 250, and 270 mV for 100, 500, and 1000 mA·cm-2, respectively, and can spontaneously be paired with chemoselective dehydrogenation of benzylamine under both ambient and industrial (6 M KOH, 65 °C) alkaline conditions. The in-depth ex-situ and in-situ characterization unequivocally demonstrate the intercalation of potassium in the birnessite-type phase with prevalent MnIII states as an active structure, which displays a trade-off between porous morphology and bulk volume catalytic activity. Further, a structure-activity relationship is realized based on the cation size and structurally similar manganese oxide polymorphs. The presented method is a substantial step forward in developing a robust MnOx catalyst for combining effective industrial OER and value-added organic oxidation.

13.
Chemphyschem ; 24(19): e202300428, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37435757

RESUMO

Nanoporous Au (NPG) has different properties compared to bulk Au, making it an interesting material for numerous applications. To modify the structure of NPG films for specific applications, e. g., the porosity, thickness, and homogeneity of the films, a fundamental understanding of the structure formation is essential. Here, we focus on NPG prepared via electrochemical reduction from Au oxide formed during high voltage (HV) electrolysis on poly-oriented Au single crystal (Au POSC) electrodes. These POSCs consist of a metal bead, with faces with different crystallographic orientations and allow screening of the influence of crystallographic orientation on the structure formation for different facets in one experiment. The HV electrolysis is performed between 100 ms and 30 s at 300 V and 540 V. The amount of Au oxide formed is determined by electrochemical measurements and the structural properties are investigated by scanning electron and optical microscopy. We show that the formation of Au oxide is mostly independent of the crystallographic orientation, except for thick layers, while the macroscopic structure of the NPG films depends on experimental parameters such as the Au oxide precursor thickness and the crystallographic orientation of the substrate. Possible reasons for the frequently observed exfoliation of the NPG films are discussed.

14.
ChemSusChem ; 16(19): e202300421, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37338003

RESUMO

A trace amount of water is typically unavoidable as an impurity in ionic liquids, which is a huge challenge for their application in Mg-ion batteries. Here, we employed molecular sieves of different pore diameters (3, 4, and 5 Å), to effectively remove the trace amounts of water from 1-methyl-1-propylpiperidinium bis(trifluoromethylsulfonyl)imide (MPPip-TFSI) and 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (BMP-TFSI). Notably, after sieving (water content <1 mg ⋅ L-1 ), new anodic peaks arise that are attributed to the formation of different anion-cation structures induced by minimizing the influence of hydrogen bonds. Furthermore, electrochemical impedance spectroscopy (EIS) reveals that the electrolyte resistance decreases by ∼10 % for MPPip-TFSI and by ∼28 % for BMP-TFSI after sieving. The electrochemical Mg deposition/dissolution is investigated in MPPip-TFSI/tetraglyme (1 : 1)+100 mM Mg(TFSI)2 +10 mM Mg(BH4 )2 using Ag/AgCl and Mg reference electrodes. The presence of a trace amount of water leads to a considerable shift of 0.9 V vs. Mg2+/ Mg in the overpotential of Mg deposition. In contrast, drying of MPPip-TFSI enhances the reversibility of Mg deposition/dissolution and suppresses the passivation of the Mg electrode.

15.
Phys Chem Chem Phys ; 25(19): 13228-13243, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37161752

RESUMO

Nanoparticles (NPs) make for intriguing heterogeneous catalysts due to their large active surface area and excellent and often size-dependent catalytic properties that emerge from a multitude of chemically different surface reaction sites. NP catalysts are, in principle, also highly tunable: even small changes to the NP size or surface facet composition, doping with heteroatoms, or changes of the supporting material can significantly alter their physicochemical properties. Because synthesis of size- and shape-controlled NP catalysts is challenging, the ability to computationally predict the most favorable NP structures for a catalytic reaction of interest is an in-demand skill that can help accelerate and streamline the material optimization process. Fundamentally, simulations of NP model systems present unique challenges to computational scientists. Not only must considerable methodological hurdles be overcome in performing calculations with hundreds to thousands of atoms while retaining appropriate accuracy to be able to probe the desired properties. Also, the data generated by simulations of NPs are typically more complex than data from simulations of, for example, single crystal surface models, and therefore often require different data analysis strategies. To this end, the present work aims to review analytical methods and data analysis strategies that have proven useful in extracting thermodynamic trends from NP simulations.

16.
Angew Chem Int Ed Engl ; 62(22): e202301253, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-36924238

RESUMO

The formation of an appropriate solid electrolyte interphase (SEI) at the anode of a sodium battery is crucially dependent on the electrochemical stability of solvent and electrolyte at the redox potential of Na/Na+ in the respective system. In order to determine entropic contributions to the relative stability of the electrolyte solution, we measure the reaction entropy of Na metal deposition for diglyme (DG) and propylene carbonate (PC) based electrolyte solutions by electrochemical microcalorimetry at single electrodes. We found a large positive reaction entropy for Na+ deposition in DG of ΔR S DG ≈ ${S\left({\rm { DG}}\right)\approx \ }$ 234 J mol-1 K-1 (c.f.: ΔR S PC ≈ ${S\left({\rm { PC}}\right)\approx \ }$ 83 J mol-1 K-1 ), which signals substantial entropic destabilization of Na+ in DG by about 0.73 eV, thus increasing the stability of solvent and electrolyte relative to Na+ reduction. We attribute this strong entropic destabilization to a highly negative solvation entropy of Na+ , due to the low dielectric constant and high freezing entropy of DG.

17.
Small ; 19(10): e2207484, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36650999

RESUMO

Density functional theory (DFT) is used to systematically investigate the electronic structure of platinum clusters grown on different graphene substrates. Platinum clusters with 1 to 10 atoms and graphene vacancy defect supports with 0 to 5 missing C atoms are investigated. Calculations show that Pt clusters bind more strongly as the vacancy size increases. For a given defect size, increasing the cluster size leads to more endothermic energy of formation, suggesting a templating effect that limits cluster growth. The opposite trend is observed for defect-free graphene where the formation energy becomes more exothermic with increasing cluster size. Calculations show that oxidation of the defect weakens binding of the Pt cluster, hence it is suggested that oxygen-free graphene supports are critical for successful attachment of Pt to carbon-based substrates. However, once the combined material is formed, oxygen adsorption is more favorable on the cluster than on the support, indicating resistance to oxidative support degradation. Finally, while highly-symmetric defects are found to encourage formation of symmetric Pt clusters, calculations also reveal that cluster stability in this size range mostly depends on the number of and ratio between PtC, PtPt, and PtO bonds; the actual cluster geometry seems secondary.

18.
Chemphyschem ; 24(5): e202200645, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36328970

RESUMO

Nanoporous Au (NPG) films have promising properties, making them suitable for various applications in (electro)catalysis or (bio)sensing. Tuning the structural properties, such as the pore size or the surface-to-volume ratio, often requires complex starting materials such as alloys, multiple synthesis steps, lengthy preparation procedures or a combination of these factors. Here we present an approach that circumvents these difficulties, enabling for a rapid and controlled preparation of NPG films starting from a bare Au electrode. In a first approach a Au oxide film is prepared by high voltage (HV) electrolysis in a KOH solution, which is then reduced either electrochemically or in the presence of H2 O2 . The resulting NPG structures and their electrochemically active surface areas strongly depend on the reduction procedure, the concentration and temperature of the H2 O2 -containing KOH solution, as well as the applied voltage and temperature during HV electrolysis. Secondly, the NPG film can be prepared directly by applying voltages that result in anodic contact glow discharge electrolysis (aCGDE). By carefully adjusting the corresponding parameters, the surface area of the final NPG film can be specifically controlled. The structural properties of the electrodes are investigated by means of XPS, SEM and electrochemical methods.

19.
Angew Chem Int Ed Engl ; 62(2): e202214927, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36336655

RESUMO

For sustainable energy storage, all-organic batteries based on redox-active polymers promise to become an alternative to lithium ion batteries. Yet, polymers contribute to the goal of an all-organic cell as electrodes or as solid electrolytes. Here, we replace the electrolyte with a deep eutectic solvent (DES) composed of sodium bis(trifluoromethanesulfonyl)imide (NaTFSI) and N-methylacetamide (NMA), while using poly(2,2,6,6-tetramethylpiperidin-1-yl-oxyl methacrylate) (PTMA) as cathode. The successful combination of a DES with a polymer electrode is reported here for the first time. The electrochemical stability of PTMA electrodes in the DES at the eutectic molar ratio of 1 : 6 is comparable to conventional battery electrolytes. More viscous electrolytes with higher salt concentration can hinder cycling at high rates. Lower salt concentration leads to decreasing capacities and faster decomposition. The eutectic mixture of 1 : 6 is best suited uniting high stability and moderate viscosity.

20.
ChemSusChem ; 16(3): e202201821, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36345708

RESUMO

One of the key challenges preventing the breakthrough of magnesium-ion batteries (MIB) is the formation of a passivating boundary layer at the Mg anode. To describe the initial steps of Mg anode degradation by O2 impurities, a Mg/O ReaxFF (force field for reactive systems) parameter set was developed capable of accurately modeling the bulk, surface, adsorption, and diffusion properties of metallic Mg and the salt MgO. It is shown that O2 immediately dissociates upon first contact with the Mg anode (modeled as Mg(0001), Mg(10 1 ‾ $\bar 1$ 0)A, and Mg(10 1 ‾ $\bar 1$ 1)), heating the surface to several 1000 K. The high temperature assists the further oxidation and forms a rock salt interphase intersected by several grain boundaries. Among the Mg surface terminations, Mg(10 1 ‾ $\bar 1$ 0)A is the most reactive, forming an MgO layer with a thickness of up to 25 Å. The trained force field can be used to model the ongoing reactions in Mg-air batteries but also to study the oxidation of magnesium metal in general.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA